Features of the distribution of microplastics on sandy beaches of the Kaliningrad region (the Baltic Sea)

Esiukova E. E. , Chubarenko I. P.


The aim of the work is to reveal the features of the distribution of microplastic particles within the sandy beaches of the Baltic Sea and to establish a possible correlation between the presence of plastic particles and that of natural inclusions (amber, paraffin, coal, etc.) in the sand samples. For this study, beaches with significantly different anthropogenic pressures on the coast of the Kaliningrad region (the Russian sector of the southeastern part of the Baltic Sea) were chosen. The sampling was carried out in spring of 2016. The samples were collected from both the surface layer of the beach and the body of the beach sediments. In total, 62 samples from five different beaches were processed. Methods of collection and processing of samples (using the modified NOAA method for extraction of microplastic from samples) as well as criteria for the identification of plastics were described in detail. Primary analysis of the granulometric composition of sandy beach deposits at the sampling sites was performed, and an attempt was made to establish a relationship between the sand grain size and the content of microplastics. The analysis showed that the concentrations of microplastic in individual samplesof sand from different beach areas range from 2 to 572 units per kilogram of dry sample. Our study demonstrated that the amount of microplastic on sandy beaches can be largely underestimated if based only on data for the sand samples collected from the surface layers of the beach. We found that microplastic is present everywhere - both in the wrack lines and in the surface layer and in the body of beach sediments. Analysis of possible correlation between the presence ofmicroplastics and that of other inclusions (of natural or anthropogenic origin, like amber, paraffin, etc.) in samples of sand from various layers of the beach showed that the pattern of distribution of such objects in the body of beach sediments can play an important role in establishing and explaining the vertical structure of the micropartics distribution in the sediment column. In particular, amber is one of the markers of the presence of microplastic in the body of the beaches of the Kaliningrad region.


microplastic, Baltic Sea, body of beach sediments, sandy beach, pit, wrack line, amber

For citation: Esiukova E. E., Chubarenko I. P. Osobennosti raspredeleniya mikroplastika na peschanyh plyazhah kaliningradskoy oblasti (baltiyskoe more) [Features of the distribution of microplastics on sandy beaches of the Kaliningrad region (the Baltic Sea)]. Regional`naya ecologiya [Regional Ecology], 2018. № 1(51). pp.108-121. (In Russian). DOI:10.30694/1026-5600-2018-1-108-121

About authors:

Esiukova E. E.

Affiliation: Shirshov Institute of Oceanology, Russian Academy of Sciences
Address: 36, Nakhimovskiy pr., Moscow, 117997, Russia

Chubarenko I. P.

Affiliation: Shirshov Institute of Oceanology, Russian Academy of Sciences
Address: 36, Nakhimovskiy pr., Moscow, 117997, Russia


1. Plastics Europe (2016): Plastics - the Facts 2016: An analysis of European latest plastics production, demand and waste data, EuPC, 2016, Brussels, Belgium, 38 p.
2. UNEP (2016). Marine plastic debris and microplastics - Global lessons and research to inspire action and guide policy change. United Nations Environment Programme, Nairobi, 2016, 252 p.
3. GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment (P. J. Kershaw and C. M. Rochman (Eds.). IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Rep. Stud. GESAMP No. 93, 2016, 220 p.
4. Cooper D. A., Corcoran P. L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii, Mar. Pollut. Bull., 2010, vol. 60, pp. 650-654. DOI: 10.1016/j.marpolbul.2009.12.026
5. Corcoran P. L., Biesinger M. C., Grifi M. Plastics and beaches: A degrading relationship, Mar. Pollut. Bull., 2009, vol. 58, pp. 80-84. DOI: 10.1016/j.marpolbul.2008.08.022.
6. Andrady A. L. Persistence of Plastic Litter in the Oceans, In: Marine Anthropogenic Litter. M. Bergmann, L. Gutow and M. Klages (Eds.). Berlin, Springer, 2015, pp. 57-72. DOI: 10.1007/978-3-319-16510-3_3.
7. Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M. Accumulation and fragmentation of plastic debris in global environments, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, vol. 364, pp. 1985-1998. DOI: 10.1098/rstb.2008.0205.
8. Cooper D. A. Effects of Chemical and Mechanical Weathering Processes on the Degradation of Plastic Debris on Marine Beaches, Electronic Thesis and Dissertation Repository, 2012, Paper 371, 219 p.
9. Arthur C., Baker J., Bamford H. (Eds.). Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris. Sept 9-11, 2008. NOAA Technical Memorandum NOS-OR&R-30, 2009, 49 pp.
10. Lusher A. L. Microplastics in the Marine Environment: Distribution, Interactions and Effects, In: Marine Anthropogenic Litter. M. Bergmann, L. Gutow and M. Klages (Eds.). Berlin, Springer, 2015, pp. 245-307. DOI: 10.1007/978-3-319-16510-3_10.
11. Esiukova E. Plastic pollution on the Baltic beaches of the Kaliningrad region, Russia, Mar. Pollut. Bull., 2017, vol. 114, pp. 1072-1080. DOI: 10.1016/j.marpolbul.2016.10.001.
12. Hammann S., Zimmer M. Wind-driven dynamics of beach-cast wrack in a tide-free system, Open Journal of Marine Science, 2014, vol. 4, pp. 68-79. DOI: 10.4236/ojms.2014.42009.
13. Ruiz-Delgado M. C., Reyes-Martínez M. J., Sánchez-Moyano J. E., Pérez J. L., García-García F. J. Distribution patterns of supralittoral arthropods: wrack deposits as a source of food and refuge on exposed sandy beaches (SW Spain), Hydrobiologia, 2015, vol. 742, pp. 205-219. DOI: 10.1007/s10750-014-1986-2.
14. Chubarenko I., Stepanova N. Microplastics in sea coastal zone: Lessons learned from the Baltic amber, Environ. Pollut., 2017, vol. 224, pp. 243-254. DOI: 10.1016/j.envpol.2017.01.085.
15. Zobkov M. B., Esiukova E. E. Mikroplastik v morskoi srede: obzor metodov otbora, podgotovki i analiza prob vody, donnykh otlozhenii i beregovykh nanosov [Microplastics in a marine environment: review of methods for sampling, processing and analyzing microplastics in water, bottom sediments, and coastal deposits]. Okeanologiya [Oceanology], 2018, vol. 58, no. 1, pp. 137-143. DOI: 10.1134/S0001437017060169.
16. Hidalgo-Ruz V., Gutow L., Thompson R. C., Thiel M. Microplastics in the marine environment: a review of the methods used for identification and quantification, Environ. Sci. Technol., 2012, vol. 46, pp. 3060-3075. DOI: 10.1016/j.marenvres.2013.02.015.
17. Ng K. L., Obbard J. P. Prevalence of microplastics in Singapore’s coastal marine environment, Mar. Pollut. Bull., 2006, vol. 52, pp. 761-767. DOI: 10.1016/j.marpolbul.2005.11.017.
18. Carson H. S., Colbert S. L., Kaylor M. J., McDermid K. J. Small plastic debris changes water movement and heat transfer through beach sediments, Mar. Pollut. Bull., 2011, vol. 62, pp. 1708-1713. DOI: 10.1016/j.marpolbul.2011.05.032.
19. Claessens M., Meester S. D., Landuyt L. V., Clerck K. D., Janssen C. R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast, Mar. Pollut. Bull., 2011, vol. 62, pp. 2199-2204. DOI: 10.1016/j.marpolbul.2011.06.030.
20. Turra A., Manzano A. B., Dias R. J. S., Mahiques M. M., Barbosa L., Balthazar-Silva D., Moreira F. T. Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms, Scientific Reports, 2014, vol. 4, Article number 4435, pp. 1-7. DOI: 10.1038/srep04435.
21. Medvedev I. P., Rabinovich A. B., and Kulikov E. A. Tides in three enclosed basins: The Baltic, Black, and Caspian Seas, Front. Mar. Sci., 2016, vol. 3, Article 46. DOI: 10.3389/fmars.2016.00046.
22. Feistel R., Naush G., Wastmund N. J. (Eds.). State and Evolution of the Baltic Sea, 1952-2005. A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment, 2008, Wiley & Sons, 712 p.
23. Lazarenko N. N., Maevskii A. V. (eds.). Gidrometeorologicheskii rezhim Vislinskogo zaliva [Hydrometeorological regime of the Vistula Lagoon], Leningrad, Gidrometeoizdat, 1971, 279 p. (In Russian).
24. Navrotskaya S. E., Chubarenko B. V. Tendentsii izmeneniya urovnya morya v lagunakh Yugo-vostochnoi Baltiki [Trends in the variations of the Sea level in the lagoons of the Southeastern Baltic]. Okeanologiya [Oceanology], 2013, vol. 53, no. 1, pp. 13-23. DOI: 10.1134/S0001437012050128.
25. Bagaev A., Mizyuk A., Khatmullina L., Isachenko I., Chubarenko I. Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion, Sci. Total Environ., 2017, vol. 599-600, pp. 560-571. DOI: 10.1016/j.scitotenv.2017.04.185.
26. Qiu Q., Tan Z., Wang J., Peng J., Li M., Zhan Z. Extraction, enumeration and identification methods for monitoring microplastics in the environment, Estuar. Coast. Shelf Sci., 2016, vol. 176, pp. 102-109. DOI: 10.1016/j.ecss.2016.04.012.
27. Lusher A. L., Welden N. A., Sobral P., Cole M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates, Anal. Methods, 2017, vol. 9, pp. 1346-1360. DOI: 10.1039/c6ay02415g.
28. Zobkov M., Esiukova E. Microplastics in Baltic Bottom Sediments: quantification procedures and first results, Mar. Pollut. Bull., 2017a, vol. 114 (2), pp. 724-732. DOI: 10.1016/j.marpolbul.2016.10.060.
29. Masura J., Baker J., Foster G., Arthur C. Laboratory methods for the analysis of microplastics in themarine environment: recommendations for quantifying synthetic particles in watersand sediments. NOAA Technical Memorandum NOS-OR&R-48, 2015, 31 p.
30. Zobkov M. B., Esiukova E. E. Evaluation of the Munich Plastic Sediment Separator efficiency in extraction of microplastics from natural marine bottom sediments, Limnol. Oceanogr.: Methods, 2017b, vol. 15, pp. 967-978. DOI: 10.1002/lom3.10217.
31. Norén F. Small plastic particles in Coastal Swedish waters. KIMO report, 2007, 11 p.
32. Nor N.H.M., Obbard J. P. Microplastics in Singapore’s coastal mangrove ecosystems, Mar. Pollut. Bull., 2014, vol. 79, pp. 278-283. DOI: 10.1016/j.marpolbul.2013.11.025.
33. Chubarenko I., Bagaiev A., Zobkov M., Esiukova E. On some physical and dynamical properties of microplastic particles in marine environment, Mar. Pollut. Bull., 2016, vol. 108, pp. 105-112. DOI: 10.1016/j.marpolbul.2016.04.048.
34. Chubarenko I. P., Esiukova E. E., Bagaev A. V., Bagaeva M. A., Grave A. N. Oceanographic drivers of three-dimensional distribution of anthropogenic microparticles in the body of sandy beaches, Sci. Total Environ., 2018, vol. 628-629, pp. 1340-1351. DOI: 10.1016/j.scitotenv.2018.02.167.
35. Badyukova E. N., Zhindarev L. A., Luk'yanova S. A., Solov'eva G. D. Eolovyi morfogenez v beregovoi zone yugo-vostochnogo poberezh’ya Baltiiskogo morya [Eolian morphogenesis in the coastal zone of the southeastern coast of the Baltic Sea]. Geomorfologiya [Geomorphology], 2012, no. 4, pp. 33-39. (In Russian).
36. Pavlidis Yu. A., Shcherbakov F. A. Fatsii shel'fa [Shelf Facies], Moscow, IORAN, 1995, 192 p. (In Russian).